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Introduction

Biologists have observed neurons in some animal
brains called place cells, which act as position
sensors. Place cells fire at high rates when the
animal is inside corresponding regions of the en-
vironment called place fields. These fields have
been observed to be approximately convex, and
intersection patterns of place fields form neural
codes. We investigate how the brain represents
space by studying convex neural codes [2].

Neural Codes

A neural code or code on n neurons is a collection
of firing patterns called codewords, C ⊆ 2[n], where
∅ ∈ C. The maximal codewords of a code are its
maximal elements with respect to set inclusion. We
can generate codes using sets in Euclidean space.
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Figure 1: The code generated by {U1, U2, U3, U4, U5} is
C = {123, 24, 45, 12, 13, 23, 1, 2, 3, 4, 5}

If U is composed by sets that are open and convex
and C(U) = C, then C is an (open) convex code.

Simplicial Complexes

A code C on n neurons has a simplicial complex
∆(C) := {ω ⊆ [n] : ω ⊆ σ for some σ ∈ C}.
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Figure 2: A geometric realization of a simplicial complex
composed by one 2-simplex (a filled-in triangle)

Elements of ∆(C) are called faces and maximal faces
are called facets. Facets correspond exactly to the
maximal codewords of C.
Example: In Fig. 2, 12 is a face and 123 is a facet.

Characterizing Convexity

A code C is max-∩∩∩-complete if it contains every
intersection of at least two facets of ∆(C). Max-∩-
complete codes are convex, as shown in [1].
Consider a ∆(C) on n neurons and let σ ⊆ [n]. A
link of σσσ with respect to ∆(C) is defined as

Lk∆(C) (σ) = {τ ⊂ [n] \ σ : τ ∪ σ ∈ ∆(C)}.

Example: For ∆(C) = {123, 124, 45, 12, 13, 23,
14, 24, 1, 2, 3, 4, 5, ∅}, we look at the links Lk∆(C)(1)
and Lk∆(C)(4):
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Figure 3: A geometric realization of ∆(C)
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Figure 4: Lk∆(C) (1) = {23, 24, 2, 3, 4}
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Figure 5: Lk∆(C) (4) = {12, 5, 1, 2}

Let C be a neural code with simplicial complex ∆(C).
We say C has a local obstruction at σσσ if there
exists some nonempty face σ ∈ ∆(C) such that:

• σ is the intersection of facets of ∆(C)
• σ ̸∈ C
• Lk∆(C) (σ) is not contractible.

It has been shown that codes with three maximal
codewords are convex if and only if they have no
local obstructions [4].

The Problem

Local obstructions do not appear in convex codes,
as shown in [3]. Neither do wheels, a geometric and
combinatorial object discussed in [6]. We investigate
the converse for codes with four maximal codewords.

Conjecture

Let C be a neural code with 4 maximal codewords.
If C has no local obstructions and no wheels, then
C is convex.

Nerves

For a collection of subsets W = {W1, W2, · · · , Wn}
of a set X , the nerve of W is the simplicial complex

N (W) :=
I ⊂ [n] : ∩i∈IWi ̸= ∅

 .

A topological result called the nerve lemma [5] lets
us investigate convexity by looking at the nerve of
the set of facets F of a code C, denoted by N (F).

Cases

Figure 6: Connected simplicial complexes with 4 vertices [2].

Results

Theorem

Let C be a 4-maximal code. If N (F) contains no
2-simplices, then the following are equivalent:

• C has no local obstructions
• C is max-∩-complete
• C is convex.

Example: If C = {123, 145, 24, 35, σ1, . . . , σk},
N (F) does not contain 2-simplices. Thus C is convex
exactly when facet intersections 1, 2, 3, 4, 5 are in C.
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Results Continued

Theorem

Let C be a 4-maximal code. If N (F) is the sim-
plicial complex L18 or L21, then C is convex if and
only if it contains no local obstructions.

Future Work

We believe our current results can be extended to the
L22 case. However, we expect wheels to play a role
in cases L24 through L28.
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