Convexity of 4-Maximal Neural Codes

Gustavo Flores ${ }^{1}$ Osiano Isekenegbe ${ }^{2}$ Deanna Perez ${ }^{3}$

MSRI $=$
${ }^{1}$ Carleton College ${ }^{2}$ Florida State University ${ }^{3}$ California State University, Fullerton

Introduction

Biologists have observed neurons in some animal brains called place cells, which act as position sensors. Place cells fire at high rates when the animal is inside corresponding regions of the environment called place fields. These fields have been observed to be approximately convex, and intersection patterns of place fields form neural codes. We investigate how the brain represents space by studying convex neural codes [2].

Neural Codes

A neural code or code on n neurons is a collection of firing patterns called codewords, $\mathcal{C} \subseteq 2^{[n]}$, where $\emptyset \in \mathcal{C}$. The maximal codewords of a code are its maximal elements with respect to set inclusion. We can generate codes using sets in Euclidean space

$$
\begin{aligned}
& \emptyset \\
& U_{5} \\
& U_{3} \quad U_{2} \times U_{4}
\end{aligned}
$$

Figure 1: The code generated by $\left\{U_{1}, U_{2}, U_{3}, U_{4}, U_{5}\right\}$ is $\mathcal{C}=\{\mathbf{1 2 3}, \mathbf{2 4}, \mathbf{4 5}, 12,13,23,1,2,3,4,5\}$
If \mathcal{U} is composed by sets that are open and convex and $\mathcal{C}(\mathcal{U})=\mathcal{C}$, then \mathcal{C} is an (open) convex code

Simplicial Complexes

A code \mathcal{C} on n neurons has a simplicial complex

$$
\Delta(\mathcal{C}):=\{\omega \subseteq[n]: \omega \subseteq \sigma \text { for some } \sigma \in \mathcal{C}\} .
$$

Figure 2: A geometric realization of a simplicial complex composed by one 2 -simplex (a filled-in triangle)
Elements of $\Delta(\mathcal{C})$ are called faces and maximal faces are called facets. Facets correspond exactly to the maximal codewords of \mathcal{C}
Example: In Fig. 2, 12 is a face and $\mathbf{1 2 3}$ is a facet

Characterizing Convexity

A code \mathcal{C} is max- \cap-complete if it contains every intersection of at least two facets of $\Delta(\mathcal{C})$. Max- $\cap-$ complete codes are convex, as shown in [1]
Consider a $\Delta(\mathcal{C})$ on n neurons and let $\sigma \subseteq[n]$. A link of $\boldsymbol{\sigma}$ with respect to $\Delta(\mathcal{C})$ is defined as

$$
\operatorname{Lk}_{\Delta(\mathcal{C})}(\sigma)=\{\tau \subset[n] \backslash \sigma: \tau \cup \sigma \in \Delta(\mathcal{C})\} .
$$

Example: For $\Delta(\mathcal{C})=\{\mathbf{1 2 3}, \mathbf{1 2 4}, \mathbf{4 5}, 12,13,23$, $14,24,1,2,3,4,5, \emptyset\}$, we look at the links $\operatorname{Lk}_{\Delta(\mathcal{C})}(1)$ and $\mathrm{Lk}_{\Delta(\mathcal{C})}(4)$:

$$
\text { Figure 3: A geometric realization of } \Delta(\mathcal{C})
$$

Let \mathcal{C} be a neural code with simplicial complex $\Delta(\mathcal{C})$ We say \mathcal{C} has a local obstruction at σ if there exists some nonempty face $\sigma \in \Delta(\mathcal{C})$ such that:

- σ is the intersection of facets of $\Delta(\mathcal{C})$
- $\sigma \notin \mathcal{C}$
- $\operatorname{Lk}_{\Delta(\mathcal{C})}(\sigma)$ is not contractible

It has been shown that codes with three maximal codewords are convex if and only if they have no local obstructions [4].

The Problem

Local obstructions do not appear in convex codes, as shown in [3]. Neither do wheels, a geometric and combinatorial object discussed in [6]. We investigate the converse for codes with four maximal codewords.

Conjecture

Let \mathcal{C} be a neural code with 4 maximal codewords. If \mathcal{C} has no local obstructions and no wheels, then \mathcal{C} is convex.

Nerves
For a collection of subsets $\mathcal{W}=\left\{W_{1}, W_{2}, \cdots, W_{n}\right\}$ of a set X, the nerve of \mathcal{W} is the simplicial complex

$$
\mathcal{N}(\mathcal{W}):=\left\{I \subset[n]: \bigcap_{i \in I} W_{i} \neq \emptyset\right\}
$$

A topological result called the nerve lemma [5] lets us investigate convexity by looking at the nerve of the set of facets \mathcal{F} of a code \mathcal{C}, denoted by $\mathcal{N}(\mathcal{F})$.

Cases

Figure 6: Connected simplicial complexes with 4 vertices [2]
Results

Theorem

Let \mathcal{C} be a 4 -maximal code. If $\mathcal{N}(\mathcal{F})$ contains no
2-simplices, then the following are equivalent:

- \mathcal{C} has no local obstructions
- \mathcal{C} is max- \cap-complete
- \mathcal{C} is convex.

Example: If $\mathcal{C}=\left\{\mathbf{1 2 3}, \mathbf{1 4 5}, \mathbf{2 4}, \mathbf{3 5}, \sigma_{1}, \ldots, \sigma_{k}\right\}$, $\mathcal{N}(\mathcal{F})$ does not contain 2-simplices. Thus \mathcal{C} is convex exactly when facet intersections $1,2,3,4,5$ are in \mathcal{C}.

Results Continued

Theorem

Let \mathcal{C} be a 4-maximal code. If $\mathcal{N}(\mathcal{F})$ is the simplicial complex L18 or L21, then \mathcal{C} is convex if and only if it contains no local obstructions.

Future Work

We believe our current results can be extended to the L22 case. However, we expect wheels to play a role in cases L24 through L28.

Acknowledgements

We thank the MSRI-UP 2022 program coordinators, namely Federico Ardila, our faculty mentor Anne Shiu, and our research assistant Saber Ahmed. We also thank the MSRI community, the Alfred P. Sloan Foundation, and the National Science Foundation.

References

[1] Joshua Cruz et al. "On open and closed convex codes" Discrete Computational Geometry 61 (2018), pp. 247
[2] Carina Curto et al. "What makes a neural code convex?" SIAM Journal on Applied Algebra and Geomvex?" SIAM Journal on Applied Algebra and Geometry 1 (2017), pp. 222-238.
[3] Chad Giusti and Vladimir Itskov. "A No-Go Theorem for One-Layer Feedforward Networks". Neural Computation 26 (2014), pp. 2527-2540.
[4] Katherine Johnston, Anne Shiu, and Clare Spinner Neural Codes with Three Maximal Codewords: Convexity and Minimal Embedding Dimension. 2020. DOI: 10.48550/ARXIV . 2008.13192
[5] Caitlin Lienkaemper, Anne Shiu, and Zev Woodstock. Obstructions to convexity in neural codes. Advances in Applied Mathematics 85 (2017), pp. 31-59.
[6] Laura Matusevich, Alexander Ruys de Perez, and Anne Shiu. Wheels: A New Criterion for Non-convexity of Neural Codes. 2021. Doi: 10.48550/ARXIV. 2108 04995. URL: https://arxiv.org/abs/2108.04995.

Contact Information

- G. Flores: floresg@carleton.edu
- O. Isekenegbe: oi21@fsu.edu
- O. Isekenegbe: oi21@fsu.edu
- D. Perez: dcp@csu.fullerton.edu

